**Simple Right Triangle Solver: Casio Classpad, TI-84 Plus**

Variables:

x = length of the base (run)

y = length of the height (rise)

d = length of the diagonal

θ = angle (opposite of side y)

**Casio Classpad (fx-CP400): TRIANGLE**

‘Setup

‘Set Decimal answers

SetDecimal

‘Set Degrees

SetDegree

‘Local \\ I use the x and y from the keyboard in combined
variable names

Local sx,sy,sd,sθ \\ set up strings to join

Local ch,x,y,d,θ

Local st1,st2,st3,st4,st

ClrText

“x= “ ⇒ sx

“y= “ ⇒ sy

“d= “ ⇒ sd

“θ= “ ⇒ sθ

‘Menu \\ set up output screen text

Print “Triangle Solver”, ColorBlue \\ color only applies for fx-CP400

Print “ “ \\ to
create a blank line

Print “Known Variables”, ColorBlue

Print “θ is opposite of y”

Print “1. x, y”

Print “2. x, d”

Print “3. y, d”

Print “4. θ, x”

Print “5. θ, y”

Print “6. θ, d”

Input ch, “1. x, y 2. x, d
3. y, d 4. θ, x 5. θ, y 6. θ, d”,”Known Variables”

‘Choice 1

If ch=1

Then

Input x, “x=”

Input y, “y=”

√(x^2 + y^2)⇒d

tan^-1(y/x)⇒θ

ExpToStr d,st1 \\
expr to string

ExpToStr θ,st2

StrJoin sd,st1,st3 \\
join strings

StrJoin sθ,st2,st4

IfEnd

‘Choice 2

If ch=2

Then

Input x, “x=”

Input d, “d=”

√(d^2 – x^2)⇒y

tan^-1(y/x)⇒θ

ExpToStr y,st1

ExpToStr θ,st2

StrJoin sy,st1,st3

StrJoin sθ,st2,st4

IfEnd

‘Choice 3

If ch=3

Then

Input y, “y=”

Input d, “d=”

√(d^2 – y^2)⇒x

tan^-1(y/x)⇒θ

ExpToStr x,st1

ExpToStr θ,st2

StrJoin sx,st1,st3

StrJoin sθ,st2,st4

IfEnd

‘Choice 4

If ch=4

Then

Input θ, “θ=”

Input x, “x=”

x/cos(θ)⇒d

x*tan(θ)⇒y

ExpToStr d,st1

ExpToStr y,st2

StrJoin sd,st1,st3

StrJoin sy,st2,st4

IfEnd

‘Choice 5

If ch=5

Then

Input θ, “θ=”

Input y, “y=”

y/sin(θ)⇒d

y/tan(θ)⇒x

ExpToStr d,st1

ExpToStr x,st2

StrJoin sd,st1,st3

StrJoin sx,st2,st4

IfEnd

‘Choice 6

If ch=6

Then

Input θ, “θ=”

Input d, “d=”

d*cos(θ)⇒x

d*sin(θ)⇒y

ExpToStr x,st1

ExpToStr y,st2

StrJoin sx,st1,st3

StrJoin sy,st2,st4

IfEnd

‘Ending

StrJoin st3,”; “,st

StrJoin st,st4,st

Message st,”Results:”

SetStandard

**TI-84 Plus (TI-84 Plus CE): TRIANGLE**

Degree

Menu("2 KNOWN
VAR","X,Y",1,"X,D",2,"Y,D",3,"θ,X",4,"θ,Y",5,"θ,D",6)

Lbl 1

Prompt X,Y

√(X²+Y²)→D

tan^-1(Y/X)→θ

Disp "D=",D

Disp "θ=",θ

Stop

Lbl 2

Prompt X,D

√(D²-X²)→Y

tan^-1(Y/X)→θ

Disp "Y=",Y

Disp "θ=",θ

Stop

Lbl 3

Prompt Y,D

√(D²-Y²)→X

tan^-1(Y/X)→θ

Disp "X=",X

Disp "θ=",θ

Stop

Lbl 4

Prompt θ,X

X/cos(θ)→D

X*tan(θ)→Y

Disp "D=",D

Disp "Y=",Y

Stop

Lbl 5

Prompt θ,Y

Y/sin(θ)→D

Y/tan(θ)→X

Disp "D=",D

Disp "X=",X

Stop

Lbl 6

Prompt D,θ

D*cos(θ)→X

D*sin(θ)→Y

Disp "X=",X

Disp "Y=",Y

Stop

Examples:

Case 1: x = 3.6, y =
4.8; results d = 6, θ ≈ 53.13010°

Case 2: x = 5, d = 10; result y ≈ 8.66025, θ = 60°

Case 3: y = 4, d = 10; result x ≈ 9.16515, θ ≈ 23.57818°

Case 4: θ = 30°, x = 8; result d ≈ 9.23760, y ≈ 4.61880

Case 5: θ = 42°, y = 6; result d ≈ 8.96686, x ≈ 6.66368

Case 6: θ = 37.6°, d = 8.88; result x ≈ 7.03553, y ≈ 5.41809

This blog is property of Edward Shore, 2016

## No comments:

## Post a Comment