Sunday, January 10, 2016

HP 15C: Coordinates on an Ellipse

HP 15C:  Coordinates on an Ellipse




Store the following values before running:
R0 = number of points.  θ always starts at 0° to 360° in equal increments.
R1 = a, length of horizontal semi-axis
R2 = b, length of vertical semi-axis

R3 is used as a counter.

The center is assumed to be (0,0).

Program:

Step
Key
Key Code
001
LBL B
42, 21, 12
002
DEG (Degrees mode)
43, 7
003
RCL 0
45, 0
004
1
1
005
-
30
006
3
3
007
10^X
13
008
÷
10
009
STO 3
44, 3
010
3
3
011
6
6
012
0
0
013
RCL÷ 0
45, 10, 0
014
STO 4
44 ,4
015
LBL 2
42, 21, 2
016
RCL 3
45, 3
017
INT
43, 44
018
R/S
31
019
RCL* 4
45, 20, 4
020
ENTER
36
021
COS
24
022
RCL* 1
45, 20, 1
023
R/S
31
024
X<>Y
34
025
SIN
23
026
RCL* 2
45, 20, 2
027
R/S
31
028
ISG 3
42, 6, 3
029
GTO 2
22, 2
030
RTN
43, 32


Outputs:
Point number (0 through n-1), [ R/S ]
X coordinate [ R/S ],
Y coordinate [ R/S ]


The program continues until all the points are revealed.


Example:

R0 = 6,  R1 = 1.2500,  R2 = 2.4700  (FIX 4 mode)

Point #
X
Y
0
1.2500
0.0000
1
0.6250
2.1391
2
-0.6250
2.1391
3
-1.2500
0.0000
4
-0.6250
-2.1391
5
0.6250
-2.1391

 This blog is property of Edward Shore.  2016.


1 comment:

Retro Review: Garrett CM 20 Calculator

Retro Review:   Garrett CM 20 Calculator   Introduction Is it Pac Man or is it a calculator? I bet if Pac Man and Ms. ...