Sunday, December 28, 2014

TI-84+: Doppler Effect, Finding an Equation of a Line with 2 Points, Arc Length of f(x), Orbit around the Sun

--------------------------------

Doppler Effect for Sound in Air


 
Program DOPPLER

: Input “TEMP IN ⁰F:”, T

: Input “SOURCE FREQ (HZ):”,F

: 331.4+0.6*5/9*(T-32)→C

: Disp “VELOCITY”, “(TOWARDS IS NEGATIVE)”

: Input “(MPH):”, S

: S/2.2369→S

: C/(C+S)*F→R

: Disp “SPEED OF SOUND (MPH)”, C*2.2369

: Disp “OBSERVED FREQUENCY”, R

 

(223 bytes)

 

Variables:

C = calculated speed of sound in air, stored in m/s

S = speed of observer relative to the source, stored in m/s.  S<0 if the source and observer are getting closer.  S>0 when the source and observer are moving apart.

F = source frequency, in Hz

R = observed frequency, in Hz

 

Example:

An observer is moving towards emitting a sound of 261.6 Hz (Middle C) at about 1.05 mph.  Input velocity as -1.05. 

 

Results:

Speed of Sound:  769.6427267 mph

Observed Frequency: 261.9573804 Hz

 
--------------------------------

Finding the Equation of a Line between Two Points

 
Enter two points as complex numbers (x+y*i).  The complex value i is accessed by pressing [2nd] [ 3 ]. Direction is important, P is your starting point and Q is your finishing point.

 
Program PT2LINE

: a+bi

: Disp “ENTER POINTS AS”,”COMPLEX NUMBERS”,”X+Yi”

: Prompt P, Q

: angle(Q-P)→S

: If S=90⁰ or S=-90⁰

: Then

: Disp “X=”, real(P)

: Else

: imag(P)-tan(S)*real(P)→C

: Disp “Y=”,tan(S),”* X +”,C

: End

 

(143 bytes)

 

Example 1:

Find an equation for the points, going from (2,5) to (4,6).

Input:

P = 2+5i

Q = 4 + 6i

Output:

Y = 0.5 * X + 4

 

Example 2:

Find an equation for the points, going from (7,3) to (9,-1).

Input:

P = 7+3i

Q = 9-i

Output:

Y = -2 * X + 17


--------------------------------

Arc Length of a Function

 

Formula: S = ∫(√(1+f’(x)^2) dx, a, b)

We will use a trick with the function variable to pull this integral off. 

** Caution: This will provide an approximate answer.  Best use four to five digits at most.

Note: Enter Y1 by pressing [VARS], [ right ] for Y-VARS, [ 1 ] for Function, [ 1 ] for Y1.

 

Program ARCLENGT

: Radian

: Disp “INPUT Y1 AS A STRING”

: Prompt Y1, A, B

: fnInt(√(1+nDeriv(Y1,X,X)^2),X,A,B)→S

: Disp “ARC LENGTH:”,S

 

(91 bytes)

 

Example:  Find the arc length of the function y = e^(-x^2/2) from x = 0 to x = 3.

 

Input:

Y1:  “e^(-X^2/2)”   (you can leave the second quote out)

A:  0

B:  3

 

Result:

S:  3.20863  (approximately)

 
--------------------------------

Orbit around the Sun Using Kepler’s Third Law

(using US Units)

 

The Mass of the Sun is 4.384 x 10^30 pounds.

 

The universal gravitational constant is:

G = 6.67384 x 10^-11 m^3/(s^2*kg) = 7.23243 x 10^-6 mi^3/(y^2*lb)

 

Kepler’s third law is:

P = √((4*π^2*a^3)/(G*(m1 + m2))

Where

a = average radius between the two objects

G = universal gravitational constant

m1 = mass of object 1

m2 = mass of object 2

P = orbit of object 2 around object 1

 

Letting m1 be the mass of the sun and simplifying in U.S. units, the periodic orbit simplifies to:

P ≈ √((5458527.439*a^3)/(4.3840 x 10^30 + m2))

** Approximate values

 

Program KEPLER3

: Disp “ORBIT AROUND THE SUN”

: Input “MASS (POUNDS):”, M

: Input “AVG. RADIUS (MI):”, A

: √((5458527.439*A^3)/(4.384E30+M))→P

: Disp “ORBIT IN YEARS:”,P

 

(135 bytes)

 

Examples:

 
Planet/Celestial Object
Mass (pounds)
Avg. Radius (miles)
Orbit (years)
Earth
1.317E25
92.954E6
1.000009092
Jupiter
4.186E27
483.682E6
11.86410888
Pluto
3.244E22
3.67005E9
248.0906781

 
This blog is property of Edward Shore.  2014.
 

 

No comments:

Post a Comment

HP Prime and TI-84 Plus: Basic Wheatstone Full Bridge Circuit

HP Prime and TI-84 Plus:  Basic Wheatstone Full Bridge Circuit The program WHEATSTONE (HP Prime) and WHTSTONE (TI-84 Plus CE) deals wi...