Good to talk with you all again. Before we get back to HP Prime programming goodness, let's make a side trip into algebra land.
The Modulus Function
Definition:
X MOD Y = R where
R = remainder(X/Y) = frac(X/Y) * Y
A practical way to get the modulus is to get the remainder (in other words, what's left over) of the division X/Y.
For example:
13 MOD 5 = 3
Divide 13 by 5, we get the quotient of 2 and the remainder of 3.
Properties:
Let A and B be integers.
A MOD A = 0. Easily justified since an integer divided by itself has no remainder.
If B > A, A > 0, and B > 0, then A MOD B = A. Any integer divided by a larger integer, the remainder will be an original integer.
Example: 11 MOD 12 = 11. The division of 11/12 has the quotient of 0 and the remainder of 11.
A common way to think of the modulus function is dealing clocks and calendars (MOD 12).
x MOD A = B, A ≥ 0 and B ≥ 0
General solution: x = B + A*n, where n is any integer
Example:
x MOD 4 = 2.
Easily x = 2 is a solution since 2/4 leaves a quotient of 0 and remainder of 2.
Observe that x = 6 also works. 6/4 has a quotient of 1 and a remainder of 2.
Hence the solution is: x = 2 + 4 * n
A MOD x = B, A ≥ 0 and B ≥ 0
A way to find possible solutions is to build a table, using the good old trial and error technique. Stop when we get to A MOD A. (See the Properties section above) This can get very lengthy when A gets large. In trade, you can easily see the solutions of A MOD x = B (if solutions exist).
Example 1: 11 MOD x = 3
11 MOD 1 = 0
11 MOD 2 = 1
11 MOD 3 = 2
11 MOD 4 = 3
11 MOD 5 = 1
11 MOD 6 = 5
11 MOD 7 = 4
11 MOD 8 = 3
11 MOD 9 = 2
11 MOD 10 = 1
11 MOD 11 = 0
From this we find that the solutions are x = 4 and x = 8. A very fortunate occasion.
Example 2: 13 MOD x = 8
13 MOD 1 = 0
13 MOD 2 = 1
13 MOD 3 = 1
13 MOD 4 = 1
13 MOD 5 = 3
13 MOD 6 = 1
13 MOD 7 = 6
13 MOD 8 = 5
13 MOD 9 = 4
13 MOD 10 = 3
13 MOD 11 = 2
13 MOD 12 = 1
13 MOD 13 = 0
Darn it! No solution to 13 MOD x = 8. It happens sometimes.
Hopefully this is helpful. Thank you for your comments and questions. Honestly I can't thank you enough. Have a great day!
Eddie
This blog is property of Edward Shore. 2013
A blog is that is all about mathematics and calculators, two of my passions in life.
Saturday, December 14, 2013
Modular Arithmetic: Basics and Solving x MOD A = B and A MOD x = B (with A ≥ 0 and B ≥ 0)
Subscribe to:
Post Comments (Atom)
Casio fx3650p and HP 21S: The Intersection Point of a Quadrilateral
Casio fx3650p and HP 21S: The Intersection Point of a Quadrilateral Introduction This program calculates the coordinates of the c...

Casio fx991EX Classwiz Review Casio FX991EX The next incarnation of the fx991 line of Casio calculators is the fx991 EX. ...

TI36X Pro Review This is a review of the TI36X Pro Calculator by Texas Instruments. History Originally, this was the TI30X Pro that w...

One of the missing features of the TI82/83/84 family is the ability to convert between bases. Here are two programs in TIBasic to help...
No comments:
Post a Comment